

CK2 inhibition as a promising treatment for chemotherapy resistant pancreatic ductal adenocarcinoma

<u>Diana Schuhmacher</u>^{1,2}, Aji Istadi^{1,2}, Beatrice Zema¹, Danni Upton^{1,2}, Deanna Miller^{1,2}, Emer Cahill¹, Henry Barraclough-Franks¹, Inna Navarro¹, Johana Luhur^{1,2}, Silvia Lombardi¹, Yasir Mahmood¹, Diego Chacon Fajardo^{1,2}, Thomas Cox^{1,2}, Roger Daly³, Marina Pajic^{1,2}

¹ The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales
² School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
³ Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute,
Monash University, Clayton, Victoria

Introduction: Pancreatic cancer (PC) will become the 2nd most common cause of cancer-related death by 2030, with a 12.5% five-year survival rate. Inadequate early detection methods mean most PC patients are diagnosed with advanced/metastatic disease. Many patients develop resistance to the current chemotherapies, and while immunotherapy is promising in other cancers, the immune "cold" tumour microenvironment of PC results in a high resistance to immunotherapy^{1,2}. Thus, understanding the mechanisms that drive therapy resistance and, how to circumvent them, is an important step in improving PC treatment. Serine/threonine kinase CK2 is a regulator of numerous signalling pathways and cellular functions and is upregulated in many cancers including chemotherapy-resistant PC^{3,4}. CK2 inhibition upregulates immune response in PC murine models and increases cancer cell sensitivity to chemotherapy by inhibiting DNA damage repair pathways^{5,6}.

Methods: Using the CK2-selective inhibitor CX-4945/Silmitasertib, and well-defined models of PC validated in our laboratory, we will investigate CK2 inhibition impact on tumorigenesis, metastasis, chemoresistance, and immune infiltration.

Results: *In vitro* we observe varied sensitivity to CK2 inhibition across patient-derived cell lines, while CK2 subcellular localisation ranged across a microarray of patient-derived xenografts between cytoplasmic, nuclear, and endosomal compartments. Examination of chemoresistant tumours revealed an increase in nuclear CK2; nuclear accumulation of CK2 is a predictor of poor prognosis⁷. *In vivo* investigation of CX-4945/Silmitasertib treatment in combination with chemotherapy is ongoing.

Conclusion: We hypothesise that CK2 inhibition will reduce metastasis and improve survival in PC models by sensitising cells to clinically used chemotherapies and promoting activation of the existing immune system.

- 1. Bear, A. S., Vonderheide, R. H. & O'Hara, M. H. *Cancer Cell* 38, 788-802, doi:https://doi.org/10.1016/j.ccell.2020.08.004 (2020).
- 2. Parkin, A. et al. *Diseases* **6**, doi:10.3390/diseases6040103 (2018).
- 3. Kreutzer, J. N., Ruzzene, M. & Guerra, B. *BMC Cancer* 10, 440, doi:10.1186/1471-2407-10-440 (2010).

CK2 inhibition as a promising treatment for chemotherapy resistant pancreatic ductal adenocarcinoma

- 4. Liu, Z.-D. et al. Cancer Letters 585, doi:10.1016/j.canlet.2024.216640 (2024).
- 5. Nelson, N. et al. *PLoS One* 12, e0170197, doi:10.1371/journal.pone.0170197 (2017).
- 6. Siddiqui-Jain, A. et al. Mol Cancer Ther 11, 994-1005, doi:10.1158/1535-7163.MCT-11-0613 (2012).
- 7. Homma, M. K. et al. Cancer Sci 112, 619-628, doi:10.1111/cas.14728 (2021).